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Abstract. Antarctic procellariiform seabirds forage over

vast stretches of open ocean in search of patchily distributed

prey resources. These seabirds are unique in that most

species have anatomically well-developed olfactory systems

and are thought to have an excellent sense of smell. Results

from controlled experiments performed at sea near South

Georgia Island in the South Atlantic indicate that different

species of procellariiforms are sensitive to a variety of

scented compounds associated with their primary prey.

These include krill-related odors (pyrazines and trimethyl-

ainine) as well as odors more closely associated with phy-

toplankton (dimethyl sulfide, DMS). Data collected in the

context of global climatic regulation suggest that at least

one of these odors (DMS) tends to be associated with

predictable bathymetry, including upwelling zones and sea-

mounts. Such odor features are not ephemeral but can be

present for days or weeks. I suggest that procellariiforms

foraging over vast distances may be able to recognize these

features reflected in the olfactory landscape over the ocean.

On the large scale, such features may aid seabirds in navi-

gation or in locating profitable foraging grounds. Once in a

profitable foraging area, procellariiforms may use olfactory

cues on a small scale to assist them in locating prey patches.

Introduction

How olfactory-guided search strategies operate over dis-

tances of hundreds or thousands of kilometers has not been

rigorously studied in most organisms that use them, yet

these behaviors stand as some of the most remarkable

navigational feats of nature. Pacific salmon (Oncorhynchus

sp.). for example, migrate thousands of kilometers to spe-

cific streams. This behavior is thought to be guided largely

by smells learned earlier in life (for review, see Hasler and

Scholz. 1983; Nevitt and Dittman. 1998). Green sea turtles
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(Chelonia mytias) nesting on Ascension Island in the middle

of the Atlantic Ocean are guided there from feeding grounds

off the coast of South America, presumably by a redundant

set of mechanisms that possibly includes an ability to smell

their island birth place (for review, see Lohmann, 1992).

To explain such behaviors, it is commonly assumed that

animals are able to recognize and follow odors emanating

from a distant source. This logic predicts that a recognizable

odor signature emanates from a site, forming a gradient that

can be detected thousands of kilometers away. By some

adaptive behavioral mechanism such as turning or swim-

ming upstream in response to the odor cue. the animal

focuses its directional movement to locate the source of the

odor plume. This hypothesis thus suggests that a salmon

entering a river system should be able to detect the scent of

its homestream waters from many hundreds of kilometers

downstream. Similarly, a sea turtle foraging off the coast of

Brazil should be able to detect and respond to odors ema-

nating from a remote island thousands of kilometers away.

But the physical parameters that dictate these behaviors do

not support such scenarios. Odors are transported in a tur-

bulent environment, suggesting that gradients are not easy

to follow (see discussion in Dusenbery, 1992). Moreover,

concentrations of site-specific odors would be small and

probably undetectable from the distances being considered.

My laboratory has been studying this problem in a novel

context olfactory foraging at sea by Antarctic procellari-

iform seabirds (Order Procellariiforms). These tube-nosed

seabirds include the petrels, albatrosses, and shearwaters.

Procellariiform seabirds forage over hundreds and even

thousands of kilometers in search of patchily distributed

food resources, most notably krill. squid, and fish (reviewed

in Prince and Morgan, 1987. and Warham. 1990). Members

of this order have among the largest olfactory bulbs of any

bird, suggesting that olfaction plays a fundamental role in

foraging behavior (Bang, 1965, 1966). Experimental trials

performed at sea and from land have shown that many
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species are attracted to fishy odors (e.g., cod liver oil. tuna

oil, or lish homogciiatei. Such studies suggest that proccl-

lariit'ornis ttsc their sense of smell to locate food patches

(Grubb. 1972: Hutchison and Wen/el. 19X0; Lequette </ a/.,

1989: Nevitt eml.. 1995).

On a broader scale, we are only beginning to investigate

how proeellariiforms use naturally occurring scented com-

pounds as foraging and navigation cues (Figs. 1 and 2). I

suggest that odors ser\e at least three distinct functions.

First, for species that travel long distances to forage, con-

tours in an odor landscape superimposed upon the ocean's

surface may ser\e as oltactots gtiidcposts that mark the path

the seahird follows isee also \Vald\ogel. 19X7). For exam-

ple, a seahird might gain directional information by travel-

ing along a shell break or another baths metric feature that is

marked by a consistent olfactory signature in the atmo-

sphere (Fig. 2A). Second, ollactors landscapes mas demar-

cate large-scale areas where prey is likely to be found (Figs.

1 and 2B). Such areas include upwelling /ones or seamounts

where primary productis its is likely to be high (Fig. I}.

Finally, odor cues emitted from prey or directly associated

with prey may assist seabnds using area-restricted search to

locate prey patches (Fig. 2('i. This area-restricted search has

been described elsewhere (Nevitt and Veil. 1999) and is

likely to involve both visual cues provided by foraging

COnspecifics and olfactory cues from prey. Although these

findings do nol support a gradient or bicoordinalc odoi map
mechanism as proposed lor homing pigeons ll'api <>t <;/..

1972: Wallraff, 19X1 i. they do lit well ssith oilier models

that more realistically desciibe atmospheric transport of

directional Olfactory cues loi birds i see res ies\ by Waldso

gel, 19X7) Our work expands upon this earlier effort by

identifying dimethyl sullide (I)MS) as a specific component
of the olfactory landscape thai piocellariiform seahirds can

delect.

Foraging at DiHVrrnl Spatial Scales

I'locellariiform seabnds breed on oceanic islands and

spend most of then h\es at sea. During the breeding season,

members of this order are tied to the nesting colony and are

thus restricted to central place foraging strategies (Stephens
and Krebs. IMX6). They must regularly return to the colony
either to relies e their mates during the incubation stage or to

provision then offspring. Their prey resources are patchy
and ephemeral, and foraging grounds may be considerable

distances from breeding colonies. These seabirds employ

highly efficient flight styles (Pennycuick. I9S2. 19X7). and

thus may be constrained less by then own energetic limita-

tions than by time and energetic limitations imposed on

them during the breeding season when mates and chicks

depend on successful foraging trips.

I speculate that procellariilorm seabirds must confront

two fundamental problems to forage efficiently. They must

first employ large scale foraging strategies to locate re-

source-rich areas where the probability of encountering a

prey patch is high. Then they must shift to smaller scale

foraging behasiors to pinpoint accessible prey patches

within these foraging areas. Hosv have different procellari-

iform species solved these problems'.
1

One approach is to forage along a path where prey might
be encountered opportunistically (Fig. 3. top. reviewed by
\\eiinerskirch. I99X). Wandering albatrosses (Diomedeu

I'Mihins) regularly use this first foraging scenario, searching

for and exploiting resources continuously upon leas ing the

colons (Jouventin and Weimerskirch. 1990: YVeimerskirch

c/ (//.. 1993: 1994). Satellite tracks of individual breeding

wandering albatrosses hase shoss n that these seabirds rou-

tinely forage along thousands of kilometers during incuba-

tion periods and when provisioning chicks on the nest

2. Thice ssass pinccllariil'nrm seahirds might use odor features,

i \i s large seale homidais mav provide consistent directional information

for piloting. (B) A large-scale odor signature may indicate a productive

area of the ocean where prey is likely to he imuui it i Once m a pioducn\e

area. 1'inK mas II.K k pu-v IISIIIL' smell I m eadi diai'iain. oilm Ifalures are

indii ii' <! m "i.i\ SS hue senates drpu't piey patches in B and C. Klernents

nl these thiee models aie nol drawn to scale.
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Figure 3. Two strategics used by long-distance foragers. (Top) Op-

portunistic foraging along a theoretical route (shaded grey) where prey is

likely to be encountered. (Bottom) Commuting to distant foraging locali-

ties (shaded grey). For both models, white boxes labeled "P" indicate

theoretical prey patches. Elements are not drawn to scale

(Jouventin and Weimerskirch, 1990). Additionally, results

from stomach temperature devices deployed in foraging

wandering albatrosses indicate that these seabirds feed reg-

ularly throughout a foraging trip, swallowing on average

one prey item every 100 km (Weimerskirch and Wilson,

1992). Several studies have shown that this species feeds

primarily on deep-water squid (e.g.. Onychoteuthidae,

Cranchiidae, and Histioteuthidae; Weimerskirch et ni,

1986; Rodhouse et al. 1987; Ridoux, 1994) that live well

beyond the diving capacities of these seabirds (Croxall and

Prince, 1994).

How these birds find this prey resource is still not known.

It has been suggested that wandering albatrosses may feed

at night when squid migrate to the surface (Croxall and

Prince. 1994) or on carrion associated with the foraging

activity of sperm whales (Ainley et <//.. 1984). Another

interesting but unexplored possibility is that wandering al-

batrosses exploit this resource by systematically foraging in

areas where this food source is likely to be available, such

as along established routes where sperm whales forage.

Whether these seabirds also use large-scale olfactory fea-

tures as guideposts (as shown in Fig. 2A) for foraging has

not yet been explored, but presents an interesting avenue for

future study. On the small scale, we hypothesize that, as

seabirds forage along a course, odor cues emitted by prey

enhance encounter rates by, in effect, increasing the prey

patch size, thereby increasing foraging efficiency (as in Fig.

2C). Through simulations of dispersion profiles of fishy-

smelling scented compounds (trimethylamine). Clark and

Shah (1992) have shown that odor emissions may extend

the detectability of a small (0.5 m) prey patch by kilometers.

The olfactory sensitivities of wandering albatrosses to

squid-related odors have not been explored, but albatrosses

have been seen to recruit to fishy odors (e.g., herring oil, cod

liver oil) in experimental trials (Nevitt, unpubl. data), sug-

gesting that they do pay attention to olfactory cues (see also

Hutchison and Wenzel. 1980).

The second strategy that foraging procellariiforms use is

to commute directly from the colony to feeding grounds,

often hundreds or thousands of kilometers away (Fig. 3.

bottom; e.g., Weimerskirch, 1998). To find such locations,

procellariiforms may rely on spatial memory, experience,

olfactory guideposts. and other navigational cues (e.g.. ce-

lestial or magnetic). It is unlikely that they are able to

perceive prey-related odor cues emanating from such ex-

treme distances, but they could use large-scale olfactory

features in the environment as indicators that they have

arrived in an area where foraging is likely to succeed (Fig.

2B; Nevitt et al.. 1995; Nevitt, 1999a). Olfactory cues may

operate on a large scale by alerting seabirds to specific areas

of the ocean where food is likely to be available, and thus

worth the energetic costs of launching a small-scale search.

According to this logic, long-distance foragers would use a

change in the odor landscape as a feature in the environment

that indicates they have arrived at a specific destination (as

in Figs. IB and 2B). It should be noted that these foraging

destinations, particularly upwelling zones or fronts, are not

constant but may fluctuate to some degree in space. An

olfactory feature that mirrors productivity in a vast expanse

of open ocean would provide the foraging seabird with

direct and instantaneous feedback that it has reached its

foraging destination. Such feedback might trigger a behav-

ioral switch to begin an area-restricted search (as in Fig.

2C). This search would be aimed at locating specific prey

patches, and as mentioned above, might involve both olfac-

tory and visual modalities (Nevitt and Veil, 1999).

Evidence for this idea comes largely from two sources:

atmospheric data showing associations of biogenic scented

compounds with prey resources or areas where prey is likely

to aggregate (Fig. 4; see discussion below) and satellite

telemetry data collected from foraging seabirds such as

black-browed albatross (Thalussarche melanophrys, Cherel

and Weimerskirch, 1995; Weimerskirch, 1998), grey-

headed albatross (Thalassarche chrysostoma, Prince el ul..

1998), light-mantled sooty albatross (Phoebetria palpe-

brata, Weimerskirch and Robertson, 1994), Southern

Buller's albatross (Thalussarche biilleri, Sagar and Wei-

merskirch, 1996), waved albatross (Phoebetria irmrata.
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Figure 4. Profile of atmospheric dimethyl sultide (DMS) measured

across the Drake Passage during the KITS eruise. 1993. This profile reflects

the polar frontal zone and is an ohuous feature in the ollactorv landscape.

Sampling methods are described elsewhere (Yum el ai, 1996; Bates and

Quinn. 1997i.

Anderson et al., 1998). and white-chinned petrels (Proccl-

Itiriti tiec/iiinoctialix. Catard and Weimerskirch. 1998).

Black-browed albatrosses, for example, travel thousands of

kilometers to forage at distant feeding grounds. These sea-

birds begin an area-restricted search only upon arrival (Veil

and Prince. 1997. also see discussion in Nevitt and Veil.

1999). Optimal foraging models suggest that animals ex-

ploiting distant food sources should move rapidly and di-

rectly to feeding areas to minimi/e time spent in transit, and

once there, should remain until they have met their enersi\

needs (Charnov. 1976; Stephens and Krebs. 19X6). Thus, it

may be more efficient m terms of both time and energy to

ignore less significant foraging opportunities en route and

travel directly to areas of known productivity. Moreover.

identifiable odor molecules that are linked to productive
areas of ocean are likely to be important cues for a fora-iini:

seabird.

l)inu-th\l Snlliclf as a Signal Molecule

Sulfur compounds are abundant in polar waters (Ber-

reshcim, 1987; Gibson el til.. I99()a, h. 1996; Yang ft til..

1992, 1994; Crocker et til.. 1995; Turner ft ai. 1995). and

recent experimental evidence suggests that many procellari-

iforms may use at least one of these compounds dimethv I

sulfide (DMS) as a foraging cue (Nevitt ft ,il.. 1995).

Marine DMSis a byproduct of the metabolic decomposition

of dimethylsulfoniopropionate (DMSP) in marine phyto-

plankton (most notably Phaeocystis pouchetii). Laboratory
studies indicate that this process is dramatically accelerated

during grazing by /ooplankton ( Dacey and Wakeham.
1986: Kellor et al.. 1989; Daly and DiTullio. 1996).

DMSP. the biogenic precursor to DMS. is synthesized

exclusively by phototrophs (Trossat et nl., 1996; Gage </<;/..

1997: Kocsis ft nl.. I99S). Some marine algae also contain

the enzyme DMSPlyase (Nishiguchi and Got!. 1995; de

Sou/a ft til.. 1996: Stefels and Dijkhuizen. 1996: Steinke ft

til.. 1996. 1998) that cleaves DMSPto form DMSand

acrylic acid. In algal blooms dominated by DMSP-contain-

mg ta\a such as the hapiophy tes i.miliania huxle\i or Phaeo-

cystis pouchetii. DMSproduction is often highest after algal

biomass peaks and is associated with bloom decline or

senescence (Nguyen et nl.. 1988: Matrai and Keller. 1993;

Gibson et til.. 1996: Zimmer-Faust <</<//.. 1996). This pattern
is particularly pronounced in polar and subpolar regions
where bloom dynamics are highly seasonal, leading to dra-

matic pulses of DMSproduction (Crocker ft til.. 1995) that

saturate bacterial DMSconsumption (Wolfe et ai. in press).

This process results in significant DMSrelease to the atmo-

sphere. Zooplankton grazing also results in DMSPrelease

or DMSproduction by similar mechanisms. This has been

observed for grazers ranging from protozoans (Wolfe ft til..

1994: Wolfe and Steinke. 1996) to metazoans such as cal-

anoid copepods (Dacey and Wakeham. 1986: Levasseur ft

nl.. 1996; Christaki et nl.. 1996) or krill (Tokunaga et nl..

1977: Daly and DiTullio. 1996). Thus. DMSproduction is

often associated with /ooplankton feeding (Leek ft nl..

19X9; Cantin ft nl.. 1996) and may even he used as a

measure of gra/mg rale in some instances (Kwint and

Kramer. 1996; Wolfe and Steinke. 1996).

Zooplankton retain algal DMSPand transfer it to higher

trophic levels: in fact the breakdown of DMSPto DMSand

acrylic acid has been shown to cause odor problems in

seafood products (G. Wolfe. California State University.
Chico. pers. comm.i. In an early study. Sieburth I 1959.

I960, and 1961 ) reported high concentrations of acrylic acid

in the gastrointestinal systems of penguins, which depressed
then microlloral populations. These seabirds fed on krill

containing DMSPfrom the alga Phtieocyxtix. a dominant

laxon in Antarctic waters. Thus, both DMSand acrylic acid

are good candidates for chemical signals that operate across

temporal and spatial scales, ranging from picoplanklon
(Bell and Mitchell. 1972; Mauser ft til.. 1975) to vertebrates.

Because DMSis transferred to the atmosphere, this signal

molecule might serve as a gtiidepost to a seabird Irving to

locate and exploit Zooplankton -rich areas. Mesoscale spatial

patterns ol DMSproduction are complex and need to be

belter quantified, but DMSproduction has been linked to the

presence of krill (Daly and DiTullio. 1996) and to areas

where pmnary pioilucliv ily is traditionally high (Fig. 4;

McTaggait and Burton. 1 992). II procellariiform seabirds

can detect DMS. then emissions that last for several days
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present distinct features in the odor landscape that may
indicate locations where foraging is likely to be productive

(Berresheim, 1987; Nevitt el til., 1995).

Seabirds Can Smell Dimethyl Sulfide

To test seabirds' responses to DMSin the field, experi-

ments from our laboratory have involved presenting sea-

birds with scented slicks and aerosols. These experiments

(Nevitt el /.. 1995: Nevitt. 1999b) were conducted at sea

near South Georgia Island (5430' S, 37'W W), a region of

the world that supports an extensive assemblage of procel-

lariiform seabirds (Croxall et cil., 1984). Seabirds were

presented with DMS-scented vegetable oil slicks paired

with plain vegetable oil slicks as controls. At some loca-

tions, seabirds were presented with slicks scented with cod

liver oil, an odor complex known to attract procellariiforms

<<.#., Hutchison and Wenzel, 1980). We predicted that if

seabirds were attracted to DMSand used it as a foraging

cue, then their behavioral response to DMSshould mirror

their response to cod liver oil.

Results from these slick experiments showed that DMS-
scented slicks attracted some species of procellariiforms as

much as twice as frequently as control slicks did. The

response was also species-specific. Cryptic species includ-

ing prions (Pachyptiln sp.), white-chinned petrels (Procel-

luriii aequinoctialis), Wilson's storm-petrels (Oceanites

oceanicus). and black-bellied storm-petrels (Fregetta tropicu)

showed a significant interest in DMS-scented slicks as com-

pared with control slicks, whereas more visible species such

as Cape petrels (Daption capense) and black-browed, grey-

headed, and wandering albatrosses showed no noticeable

differences in their responses to the two slicks. Moreover,

patterns of recruitment to cod-liver-scented slicks were sim-

ilar to patterns observed in response to DMS-scented slicks,

suggesting that DMSwas just as potent as this food-related

odor in attracting certain species (see Nevitt, 1999b).

The use of DMS as a foraging cue was tested in a

different set of experiments in which we monitored the

degree to which individuals zigzagged upwind when pre-

sented with scented and unscented aerosols (Nevitt el til,,

1995). This behavior had been described previously

(Hutchison and Wenzel. 1980). and it presumably directs

the seabird to the source of an odor plume in this case an

aerosol delivery system. Wepredicted that if a seabird were

interested in DMS, then it would zigzag more in the pres-

ence of a DMS-scented plume than of an unscented aerosol

spray, and that this behavior could be measured as a differ-

ence in turning rate. Results from experiments supported

our previous findings: white-chinned petrels showed a 25%
increase in their turning rate when presented with a DMS-
scented aerosol. (Note that these seabirds had also displayed

a significant attraction to DMS-scented slicks as compared
with plain vegetable oil.) Black-browed albatrosses, on the

other hand, did not turn any more frequently in response to

DMS-scented aerosols than in response to controls, suggest-

ing that these seabirds do not use this specific odor cue to

locate prey patches (as in Fig. 2C: note that behaviors

represented in Fig. 2A and B were not addressed in this

study).

Procellariiforms May Associate with Natural

Emissions of Dimethyl Sulfide

To begin to explore whether procellariiforms forage in

areas where atmospheric DMS is naturally elevated, we

have recently analyzed seabird survey data collected as part

of the 1993 Radioactively Important Trace Species (RITS)

cruise. The cruise track crossed the Drake Passage to Palmer

Station on the Antarctic Peninsula, continued southwest to

about 67 S, 140 W, and then headed north to 57 N. 140 W.

Sulfur, carbon, and nitrogen gas phase species were mea-

sured to quantify their cycling in the surface ocean and to

calculate the exchange of these compounds between the

ocean and the atmosphere. Methods for sampling atmo-

spheric DMSare described elsewhere (Yvon et /.. 1996;

Bates and Quinn. 1997).

Seabird observations were performed from 66S in the

Southern Ocean to 30S in the Pacific Ocean over a period

of 1 1 days. To determine background species compositions,

all seabirds within a 100-m box, positioned 100 m off the

bow of the ship, were counted using standard methods

(Tasker et id.. 1984). All observations were conducted in a

blind manner, in which the observer was not informed of the

local DMS levels. To determine possible correlations be-

tween seabird abundance and local concentrations of atmo-

spheric DMS, we examined the percent frequency (per

hour) of 24 procellariiform species at low (0-4.0 pA//l for

atmospheric DMS; 0-1 .0 nmol for seawater DMS), medium

(4.1-8.0 pM/1; 1.1-2.0 nmol), and high (8.1-12.5 pM/1;

2.1-3.0 nmol) concentrations of DMS.
Weobserved a similar distribution of species at low (Fig.

5A) and medium (Fig. 5B) atmospheric DMSconcentra-

tions, but only blue petrels (Halobaena caerulea) and prions

(Pachyptila sp.) were observed when atmospheric DMS
levels were highest (Fig. 5C). In addition, blue petrels and

prions were most abundant when atmospheric DMSlevels

were highest (Fig. 6: (A) Kruskal-Wallis test statistic =

16.110, P < 0.0001, df = 2 for blue petrels: (B) Kruskal-

Wallis test statistic = 12.503, P = 0.002. df = 2 for prions.

Tests were performed with Dunn-Sidak corrections to avoid

Type-I errors). This finding is consistent with results from

earlier work indicating enhanced recruitment of prions to

DMSin controlled studies (Nevitt et til.. 1995; no data are

available for blue petrels). As discussed above, DMSpro-

duction is an indicator of krill grazing (e.g., Daly and

DiTullio. 1996), and most prion diets are composed pre-

dominantly of crustaceans, including krill, amphipods, and

copepods (e.g., Imber, 1981; Prince and Copestake, 1990;

Ridoux, 1994; Liddle. 1994: Reid et ai, 1997). Similarly,
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sooty sheatw atci i/'//mm I.'MMM; hlpl

= blue petrel

(Haliibacmi caeruleut: grpt 'jicv peliel (I'rm i-llnrni < int'ini). s;jpt

southern giant petrel l,V/<;< rnHci f< -\ vt,'"'"' ". w:i;il wandering albatmss

(Diomedea exulam,}: whpt
= while-headed petrel (I'ttrodroma lf\\nnin.

cap!
= Cape petrel i/>/;/i;i.<n , ,j/v;n. i. wisp Wilson's storm petrel

(Oceaniles ocfanicu.it: ghal
=

grey-In-. nlo I albatross i'/'/iu/<m<iiv/ic (/in-

soitiima): bbsp
= black-bellied storm-peurl (Fregetta tropica)', antu

Antarctic fulmar (Fulmariui glacialuiiles): undp
= unidentified dmns.'

petrel (Pelecamrides sp.): wcpl while chinned petrel i/'/v>i cllariu <i<'</i<i-

nticliali.it: sppt
=

soft-plumaged petrel (Picrntlnnnii inlln\; ansli

Audubon's shearwater (Puffmus Ihi'miinii-rh. kept
= Kerguelen pelrel

(Plenulmma hreviroslris); lish = little shearwatei i/'n//iin (/SMHI///.M:

roal =
royal alh.itross ' lin'im, /./ C/KIHIC/I/MMI. snpl snow petiel

'

bual Unllrr's albatross i l'li,ilm\, in In- h,ill,n\.

papl
= I'.irkmson's petrel (I'rncfllaria parkinsoni); wlpi We^-tland

petrel (Procellaria wextlamlicat.

crustaceans are the maun ptc\ t\po tor blue petrels (PriiKv.

1980: Sleele and Klagcs, 1986).

This is the lirst study to show a significant association

between a n.itiiially occurring scented compound and a

species of foraging procellariiform scanird. The stud\ is

preliminary and does not rule out the possibility that othei

procellariiforms use DMS or other nalurall) occurring

scented compounds as foraging cues clearly more work

needs to be done. But this result is curious because prions

use a foraging behavior unique among procellariiforms;

whereas most petrels grasp their prey, prions (or "whale

birds") can also filter feed, foraging by skimming over the

surface of the water. Morphological adaptations for this

lot aging strateg) include a dorsoventrally compressed bill

with comb-like lamellae fringing the side of the palate us

well as an elastic buccal pouch for holding prey between the

rami of the mandibles. Scattered blue petrels frequentK

associate with prion (locks (Nevitt. pers. obs.) and may cue

off the foraging behavior of prions. These seabirds also have

serrations on the sides of the upper mandibles, although

these lamellae are not developed to the same degree as in

prions. Although little information is available about the

visual or olfaclor> acuiu of these seabirds. unpublished

work examining prion e\e structure suggests that they may
not be as well adapted for visual foraging as other procel-

lariiforms that have been studied i(i Martin. University of

Birmingham. UK. pers. comm.l. Whether other adaptations

make prions particularly well suited to using olfactory cues

to forage needs to he studied in greater detail.

Questions for the Future

Years of effort only begin to scratch the surface of any

complex biological problem. But this is an exciting time to

be studying the sensors aspects of how seahirds forage.

=

i

i.'

All Prions B

low medium high

Air DMSconcentration

I inure ft. Observations of (A) blue petrels (Halobaena caerulea] and

(B) prions (Pach\plila sp.) at low. medium, and high atmospheric concen-

trations dl dimethvl sultule (DMS). Signilicanl differences (P < 0.05) are

indicated (*).
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especially since telemetry technology is beginning to allow

researchers to address long-standing questions directly from

the perspective of a foraging seabird. Since many of these

seabirds are large and highly efficient fliers, it is currently

possible to instrument them with a variety of devices for

monitoring fine-scale behavioral parameters such as turning

rate, time spent on the water, and frequency of feeding

events (Weimerskirch and Wilson, 1992; Wilson et til.,

1995; reviewed by Weimerskirch, 19981. Until recently,

most telemetry applications have focused on clarifying ba-

sic foraging biology (where do birds go, how frequently do

they eat, etc.), rather than on the sensory mechanisms un-

derlying how procellariiforms locate productive feeding ar-

eas or prey patches. Potential studies relevant to olfactory

foraging include ( 1 ) quantifying fine-scale movement pat-

terns while seabirds are en route to foraging areas, (2)

identifying whether turning rate changes relative to wind

direction once a bird begins an area-restricted search, and

(3) identifying how sensory deprivation may influence these

and other parameters. As technology improves, it should

soon be possible to equip seabirds with sensors that can

measure biologically relevant odors in the environment.

Such methods will allow researchers to monitor behavioral

activity in conjunction with environmental parameters rel-

evant to olfaction.

A second area of study is to examine how different

species interact with each other to locate and exploit ephem-

eral prey resources, and how different sensory adaptations

have evolved to shape these interactions. Odors most likely

work in conjunction with other cues, particularly visual cues

provided by prey as well as by other foraging seabirds or

marine mammals. Interspecific behavioral interactions ap-

pear to follow consistent trends both at mixed-species feed-

ing aggregations (Harrison et til., 1991 ) and at experimental

olfactory trials performed at sea (Nevitt et al., 1995; Nevitt,

1999a, b). Where procellariiforms forage in mixed-species

aggregations, some species dominate these interactions

(e.g., giant petrels, which are known to prey upon other

petrels) while others (e.g., storm-petrels) tend to avoid

them. Different olfactory abilities or adaptations may play a

role in defining what foraging strategies different species

use in various situations. For example, a heightened sense of

smell may give some species a competitive edge in oppor-

tunistically locating prey before being displaced by other

species (Nevitt, 1999b). This is consistent with our findings

that smaller, cryptic species such as prions and storm-petrels

responded strongly to DMS-scented slicks whereas larger,

more visible species did not. If these storm-petrels, for

example, have superior olfactory abilities, they may be able

to locate and exploit prey patches before larger species

arrive. In addition, since they are cryptic, they may be more

difficult for potential competitors to spot. This type of

interspecific interaction has also been observed between

turkey vultures (Cathartes mini) and black vultures (Cor-

agyps utnititx). Where these species co-occur, turkey vul-

tures are able to find prey more quickly using a well-

developed sense of smell. In this case, the smaller black

vultures search visually for the larger turkey vultures and

then displace them from their find (Buckley, 1997).

Finally, one of the most complex and difficult challenges

continues to be identifying and measuring scented com-

pounds associated with natural distributions of prey. Know-

ing which odors different species can physiologically detect

and use as foraging cues will enhance our understanding of

species-specific foraging strategies, distribution, and behav-

ior. This information will give us the ability to develop and

apply models of olfactory foraging on a broader scale to

better understand how odors emitted by prey might extend

the range at which a prey patch would be detected by a

foraging seabird. Such a framework will be critical in ex-

ploring how changes in prey distribution and density might

affect the foraging success of procellariiforms.
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